The Pioneer of CVD Graphene Commercialization

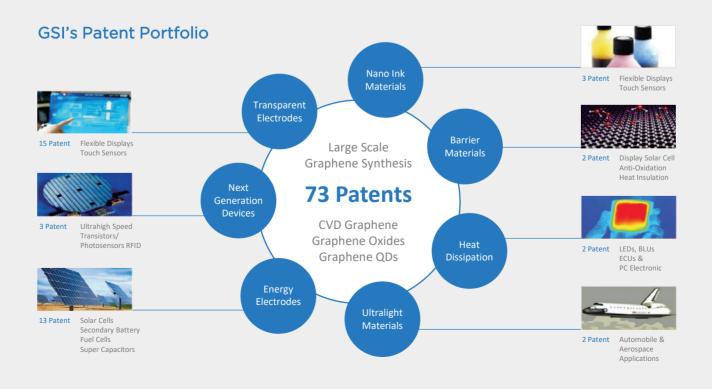
www.graphenesq.com

Graphene Square, Inc. is a pioneer in the commercialization of graphene material and graphene films for use as a transparent conductor and in other electronics applications. Established in 2012 as a spin-off of the research of Prof. Byung Hee Hong at Seoul National University and with headquarters in Seoul, Korea.

Our mission is to be the world's first company commercializing CVD graphene technology and No.1 cost-competitive & best-quality graphene film supplier in both rigid and flexible electronic markets.

Business Areas

CVD Synthesis Systems


For researchers who want to synthesize their own graphene or 2D materials, Graphene Square markets a low-cost thermal CVD system that allows the users to easily begin synthesizing their own large-area, highquality graphene and 2D materials samples in a lab environment. Graphene Square also provides training programs covering the current best practices for graphene growth, etching, patterning, and transfer. Other custom CVD systems are available for the synthesis of various 2D materials such as MoS2, WSe2, h-BN, etc.

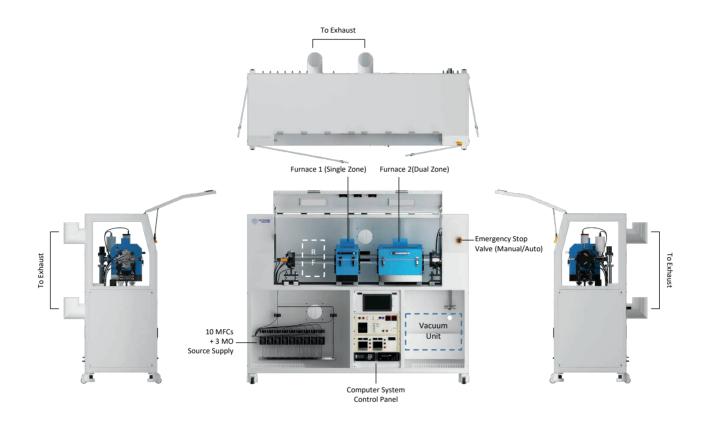
Graphene Samples & Fab. Services

Using state-of-the-art chemical vapor deposition (CVD) methods developed inhouse, Graphene Square offers the highest quality graphene samples currently on the market. In addition to the standard samples available online, Graphene Square can provide various fab. services including the sample transfer on the customers' own substrates as well as end-equipment prototype devices. Graphene Square also supplies graphene oxides (GOS) and graphene quantum dots (GQDs) for various biological, display, and energy researches.

IP Licensing & Consultant

Graphene Square provides general consulting services and also licenses technology from its extensive patent portfolio, which has been recently highlighted by *Bloomberg* and *Businessweek*. Areas covered include: industrial graphene synthesis, transfer, and patterning using rollto-roll techniques and their applications to current consumer electronic products as well as future applications including flexible and wearable electronics.

CVD Systems for Graphene & 2D Materials


Sophisticated · Cost Effective · Reliable · Programmable Systems · for Highest Sample Quality Fast Heating & Cooling · World's Best Training Service Available

The development of Graphene Square's CVD systems is based on the researches of Prof. Byung Hee Hong who reported the synthesis of large-area graphene by CVD for the first time in 2009. His continuous efforts toward the industrial synthesis of high-quality graphene enabled the development of most-reliable and cost-effective synthesis systems not only for graphene but also for h-BN and other 2D materials. The performance of our CVD systems for R&D have been proven by more than 100 systems installed across the world. Graphene Square also provides the world's best training service to researchers, including the latest synthesis, transfer, and patterning processes needed for the fabrication of the best-quality devices.

TCVD-RF100CA

Premium Custom-Designed System for TMDC & h-BN

Chemical vapor deposition (CVD) system for the syntheses of 2D materials at scales from a chip to a wafer, including the synthesis of **graphene**, **h-BN**, **TMDCs** on various substrates by use of gas-phase or solid precursors and metalorganic (MO) sources.

Features

- Size (mm): 2300(W) x 1770(H) x 750(D)
- Up to 10 gases and 3 MO sources for gas-phase synthesis.
- Motor-controlled movable heater for fast heating and cooling (patented).
- Fully computer-controlled programmable recipes.
- TCVD100 platform: Proven performance for ~100 systems for more than 5 years.
- Invited training for full sample preparation processes.

Customers / Demo Sites

Seoul National University Graphene Research Center

Technical Specification

CVD Reactor	Tube type 4 inch diameter quartz	
Substrate Size	 Lateral insertion of 10 mm to < 4 inch wafers possible. (Loading frames for small samples) Rolled metallic foils can be loaded to synthesize A4 sized or larger 2D materials. 	
Heating	 Dual-zone heater and controller for graphene/h-BN synthesis. Single-zone precursor heater and Dual-zone deposition heater for TMDC synthesis. The heaters are movable along two rails and the distance can be motor-controlled, enabling 10ºC/sec or faster temperature change rate. 	
Base Pressure	 10⁻⁵ mbar (depending on the dryness of source) 	
Operating Pressure	• 10 ⁻³ mbar – 1 bar	
Precursor	 Max 10 gas lines (ex. CH₄, C₂H₄, NH₃, B₂H₆, Ar, H₂, H₂S, H₂Se, N₂, O₂) + 2 extra ports. Metal oxide sources of various transition metals placed in Heat Zone 1 for solid source growth. 	
Other metal organic (MO) sources	 Extra 3 Metal-Organic Source Injection Ports are included. (ex Mo(CO)6, Fe(CO)5) Low-T cold trap for residual sources. 	
Flow control	 Precursor gases: 0.1 – 10 sccm Other gases: 10 – 1000 sccm Automatic flow control. 	
Vacuum	 Turbo pump 450 l/s (ISO160) < 10⁻⁶ mbar. Dry scroll pump < 10⁻¹ mbar. Main Gate Valve Pneumatic type / Fore-line / roughing Angle Valve / Foamed bellows By-pass pumping adaptor, clamp & centering. 	
T-measurement	Standard Thermocouple (NIR calibrated)	
Sample switching	 Position switching by sample loading stage. 	
System Control	 Control PC system (12" touch, dual core) Serial Network module (4-ch) Remote IO module (RS485) System base programming / System recipe control module / System date file save module Software upgrade support. Gas valve, angle valve Open/Close / Rotary pump On/Off switch / Main power On/Off switch Cooling water & air pressure switch. 	

TCVD-DC100CA

Premium Custom Design Dual CVD System with a Glove Box

Chemical vapor deposition (CVD) system for the syntheses of 2D materials at scales from a chip to a wafer, including the synthesis of **graphene**, **h-BN**, **TMDCs** on various substrates by use of gas-phase or solid precursors and metalorganic (MO) sources. The synthesized samples can be transferred to a glove box filled with inert gases for further processes without exposure to air environment.

Features

- Size(mm): 3000(W) x 1800(H) x 750(D)
- Up to 10 gases and 3 MO sources for gas-phase synthesis.
- Motor-controlled movable heater for fast heating and cooling (patented).
- Fully computer-controlled programmable recipes.
- TCVD100 platform: Proven performance for ~100 systems for more than 5 years.
- Invited training for full sample preparation processes from synthesis, etching, and transfer.
- Supply of high-quality source materials.
- 1 year warranty included (2 year extended warranty available)
- CVD chambers connected to a Glove Box. Free from air exposure.

Customers / Demo Sites

Seoul National University Graphene Research Center

University of North Texas

Technical Specification

CVD Reactor	• Tube type 4 inch diameter quartz		
Substrate Size	 Lateral insertion of 10 mm to < 4 inch wafers possible. (Loading frames for small samples) Rolled metallic foils can be loaded to synthesize A4 sized or larger 2D materials. 		
Heating	 Dual-zone heater and controller for graphene/h-BN synthesis. Single-zone precursor heater and Dual-zone deposition heater for TMDC synthesis. The heaters are movable along two rails and the distance can be motor-controlled, enabling 10°C/sec or faster temperature change rate. 		
Base Pressure	 10⁻⁵ mbar (depending on the dryness of source) 		
Operating Pressure	• 10 ⁻³ mbar – 1 bar		
Precursor	 Max 10 gas lines (ex. CH₄, C₂H₄, NH₃, B₂H₆, Ar, H₂, H₂S, H₂Se, N₂, O₂) + 2 extra ports. Metal oxide sources of various transition metals placed in Heat Zone 1 for solid source growth. 		
Other metal organic (MO) sources	 Extra 3 Metal-Organic Source Injection Ports are included. (ex Mo(CO)6, Fe(CO)5) Low-T cold trap for residual sources. 		
Flow control	 Precursor gases: 0.1 – 10 sccm Other gases: 10 – 1000 sccm Automatic flow control. 		
Vacuum	 Turbo pump 450 l/s (ISO160) < 10⁻⁶ mbar. Dry scroll pump < 10⁻¹ mbar. Main Gate Valve Pneumatic type / Fore-line / roughing Angle Valve / Foamed bellows By-pass pumping adaptor, clamp & centering. 		
T-measurement	• Standard Thermocouple (NIR calibrated)		
Sample switching	Position switching by sample loading stage.		
System Control	 Control PC system (12" touch, dual core) Serial Network module (4-ch) Remote IO module (RS485) System base programming / System recipe control module / System date file save module Software upgrade support. Gas valve, angle valve Open/Close / Rotary pump On/Off switch / Main power On/Off switch Cooling water & air pressure switch. 		

TCVD-50B

2-Inch Table-Top Manual Type Thermal CVD

This small-size equipment has been developed on customers' demand for the lower cost but higher quality synthesis of graphene and 2D materials. TCVD-50B is the most ideal system for researchers who are limited in budget. The versatile specifications from fully manual to semi-automatic systems can be adjusted to fit the customers' budget. We recommend this system for training or laboratory classes, and the detailed instructing program and materials will be provided upon purchase.

Features

- Size(mm): 1500(W) x 893(H) x 590(D)
- Economic & space-saving model.
- Optimized for graphene, CNT, h-BN and TMDC growth.
- Water-cooled end chambers and doors.
- Process Temperature: ~1,100°C
- Protective design from heat
- Uniformity of Film Thickness: ≤+-3%
- Testing Uniformity: ≤+-3%
- Movable furnace method is our unique knowhow for fast heating and fast cooling of the sample

Customization

Furnace

- Single 2 Heating Zones (Standard)
- Dual 3 Heating Zones
- Single + RF M/W Module

Chamber Size

- 2 inch (Standard)
- 4 inch

Pumping Unit

- Oil Type Rotary Pump (Standard)
- Dry Scroll Pump
- Additional: Mechanical Turbo Pump

Gas Control Unit

- 3 MFCs +1 Spare (Standard)
- Up to 5 MFCs

Warranty

- 1 year Included (Standard)
- 2 years Optional

TCVD-100A

Standard 4-Inch Thermal CVD System with a Safety Cabinet

TCVD-100A is a very sophisticated and cost effective CVD system that can be equipped with semi-automatic or fully programmable gas-flow and temperature control modules. It is the most ideal equipment for the synthesis of high quality graphene and h-BNs, which can be easily extended to various 2D materials synthesis. The safety cabinet that covers the whole system protects users from any hazardous event, and the emergency stop button will ensure the safety even further.

Features

- Size(mm): 1750(W) x 1585(H) x 750(D)
- Advanced Semi-Auto System
- Optimized for graphene, CNT, h-BN and TMDC growth
- Water-cooled end chambers and doors
- Process Temperature: ~1,100°C
- Uniformity of Film Thickness: ≤+-3%
- Testing Uniformity: ≤+-3%
- Movable furnace method is our unique knowhow for fast heating and fast
 Warranty cooling of the sample
- Standard safety box

Customers

World-wide customers in US, EU, Middle East, and Asia countries.

Customization

Furnace

- Single 2 Heating Zones (Standard)
- Dual 3 Heating Zones
- Single + RF M/W Module

Chamber Size

- 2 inch 6 inch
- 4 inch (Standard) 8 inch

Pumping Unit

- Oil Type Rotary Pump (Standard)
- Dry Scroll Pump
- Additional: Mechanical Turbo Pump

Gas Control Unit

- 3 MFCs +1 Spare (Standard)
- Up to 8 MFCs

- 1 year Included (Standard)
- 2 years Optional

	Graphene	h-BN	TMDC
# sales	~100 systems	8 systems	10 systems
Clients		E CONSTRUCTION	

Proven performance in more than 100 systems installed in Korea.

TCVD-D100CA

4-Inch Automatic Dual-Furnace CVD System for TMDC Synthesis

TCVD-D100CA is an advanced equipment dedicated to the growth of TMDC materials such as MoS₂, WSe₂, etc. The computer-aided controlling module promises the reliable growth condition for multiple users. The movable dual furnace system enables the fast heating and fast cooling of source materials and substrates, which is important for the synthesis of higher quality TMDCs. The safety housing with emergency alarm/stop functions will ensure the safe operation by users.

Features

- Size(mm): 2300(W) x 1770(H) x 750(D)
- Advanced Computer Controlled Automatic System
- Optimized for graphene, CNT, h-BN and TMDC growth
- Water-cooled end chambers and doors
- Process Temperature: ~1,100°C
- Uniformity of Film Thickness: ≤+-3%
- Testing Uniformity: ≤+-3%
- Movable furnace method is our unique knowhow for fast heating and fast cooling of the sample.
- Standard safety box
- * Price will be determined after consultation. (Different customization from the standard parts will affect the overall price.)

Customers

Customization

Furnace

- Single 2 Heating Zones
- Dual 3 Heating Zones (Standard)
- Triple 4 Heating Zones
- Single or Dual + RF M/W Module

Chamber Size

- 2 inch 6 inch
- 4 inch (Standard) 8 inch

Pumping Unit

- Oil Type Rotary Pump (Standard)
- Dry Scroll Pump
- Additional: Mechanical Turbo Pump

Gas Control Unit

- 3 MFCs +1 Spare (Standard)
- Up to 10 MFCs

Warranty

- 1 year Included (Standard)
- 2 years Optional

Reactive Ion Etcher

RI Etcher's Dry Etching is suitable for patterning since corrosion in the vertical direction can be exceedly suppressed. By using the reactive gas plasma with gases [such as oxygen, nitrogen, CF4] carbon materials such as graphene, CNT or thin film material such as SiO2, Si3N4 can be etched or doped.

Features

- Size(mm): 1120(W) x 1269(H) x 750 (D)
- CCP / PECVD
- Anisotropic etching characteristics
- Fine machining performance
- Accelerated by the DC BIAS
- W / F and AWLL surface DAMAGE
- Metal contamination, P / T, E / R Low
- Temperature cooling

Customization

Chamber Unit

- Material : Stainless304
- Chamber size : (Optional)
- Top shower head(Switched bias)
- ¼"VCR vent port
- Window port (I.D40mm)
- Material : Hard anodizing Al with ceramic insulator
- 600watt RF power with matching box
- Water cooling
- Max sample size : 6inch
- Option : Up/down / Heating 400°C

Gas Control Unit

- Material : Hard anodizing aluminum with insulator
- ¼"VCR Gas input port

Pumping Unit

- MKS NW40 Auto pressure control valve with
- Controller
- 600l/m Rotary pump
- Capacitance gauge (10torr NW16)
- ATM sensor
- Option : High Vacuum unit Turbo pump(magnet type/Full range
- MKS Ar/O2/SF6 Mass flow controller
- On/off Diaphram valve unit
- Option : 2channel addition Gas leak sensor

Control Unit

- 15-inch ouch panel control
- System recipe
- Interlock (Water/Pneumatic air)
- Data loading

GRAPHENE SQUARE PRODUCT BROCHURE 08....09

E-beam Evaporator

The system is cooled by heat absorption and liquid evaporation and introducing the liquid refrigerant that has passed through expansion valve and decompressed to low temperature and low pressure and exchanges heat with surrounding space or object to be cooled. Unlike a thermal evaporator, it is a device that deposits an electron beam by using a crucible, so that the deposited film is homogenized compared to a thermal evaporation.

Features

- Size(mm): 1300(W) x 1637(H) x 930(D)
- Compact, space-saving design
- Rate & thickness control
- Source & substrate shutters
- Multi-source organic evaporation
- Ergonomic to operate, easy to clean
- Compatible with most standard deposition sources
- Configured for your application

Customization

Chamber Unit

- Material : Stainless304 / Aluminum
- Chamber size : 450x450x600
 - Front open door with window (shutter)
 - ¼"VCR vent port
 - Pumping port/gauge/spare port

Substrate Unit

- Material : Inconel600 (High temp)
- Water cooling stage : OFHC
- Max sample size : 6inch
- Option : Up/down / Heating max temp 400°C / Rotation by motor/Bias for cleaning

E-beam evaporator Unit

- E-beam power supply 6kW with Sweep controller / Remote control unit
- E-Gun Boat (1~6 multi pocket capacity : 4~7cc)
- W, Mo source evaporation boat install
- Max current 300A (Electrical rod cooling)
- Pneumatic shutter for source

Pumping Unit

- Osaka turbo pump 1100l/s ISO200
- Inlet flange
- 600l/m Rotary pump
- Ion gauge/convection gauge
- ATM sensor Option : Load-lock unit/Cryo pump

Control Unit

- System manual operation
- Option : Semi-auto operation system
 - · 15-inch touch panel control
 - · System recipe
 - · Interlock (Water/Pneumatic air)
 - · Data loading

Thermal Evaporator

The system is cooled by heat absorption by liquid evaporation by introducing the liquid refrigerant that has passed through expansion valve and decompressed to low temperature and low pressure and exchanges heat with surrounding space or object to be cooled. Unlike the E-beam evaporator, the Thermal evaporator is heated by Joule heat by placing sample on tungsten platform. It has the advantage of depositing various materials and it is possible to deposit as much sample as necessary. However, the deposited homogeneity is lower than the E-beam evaporator.

Features

- Size(mm): 800(W) x 1707(H) x 800 (D)
- Compact, space-saving design
- Delivers optimal performance and utilizing top quality sub-components.
- High speed deposition
- Ergonomic to operate, easy to clean
- All stainless steel construction
- Configured for your application

Customization

Chamber Unit

- Material : Stainless304 / Aluminum
- Chamber size : 350x350x500
 - Front open door with window (shutter)
 - ¼"VCR vent port
 - Pumping port/gauge/spare port

Substrate Unit

- Material : Inconel600 (High temp)
- Water cooling stage : OFHC
- Max sample size : 6inch
- Option : Up/down / Heating max temp 400°C / Rotation by motor/Bias for cleaning

Thermal evaporator Unit

- W, Mo source evaporation boat install
- Max current 300A (Electrical rod cooling)
- Pneumatic shutter for source

Pumping Unit

- Osaka turbo pump 450l/s ISO160 inlet flange
- 400l/m Rotary pump
- Ion gauge/convection gauge
- Capacitance gauge (10torr NW16)
- ATM sensor
- Option : Load-lock unit/Cryo pump

Control Unit

- System manual operation
- Option : Semi-auto operation system
 - 15-inch touch panel control
 - \cdot System recipe
 - · Interlock (Water/Pneumatic air)
 - · Data loading

Graphene Samples

The Highest Quality CVD Graphene Films on Custom Substrates - Graphene Oxides (GOs) Graphene Quantum Dots (GQDs) - Consumables for Graphene Researches

Using state-of-the-art chemical vapor deposition (CVD) methods developed in-house, Graphene Square offers the highest quality graphene samples currently on the market. In addition to the standard samples available online, Graphene Square can provide various fab. services including the sample transfer on the customers' own substrates as well as end-equipment prototype devices. Graphene Square also supplies graphene oxides (GOs) and graphene quantum dots (GQDs) applicable to various biological, display, and energy researches.

GSI's Patents List (Selected)

Graphene Synthesis & Doping

No.	Reg. Date	Title (ENG)	Reg. No (Korea)	Reg. No (International)
01.	2013-08-06	Stable graphene film and preparing method of the same		
02.	2013-08-29	Method for transferring graphene using a hot press		US 8916013 B2
03.	2013-09-23	Low-temperature forming method of graphene, and direct transfer of graphene and graphene shee t using the same		JP 5705315 B2
04.	2014-01-07	Dual doping method of graphene, dual-doped graphene, and device including the same 10-		
05.	2014-07-18	Preparing method of graphene sheet, graphene laminate, preparing method of transformation-aff ordable graphene sheet, transformation-affordable graphene sheet and device using the same	10-1423037	
06.	2014-12-01	N-doping method of graphene	10-1469450	

Continuous Production of Graphene

No.	Reg. Date	Title (ENG)	Reg. No (Korea)	Reg. No (International)
01.	2013-02-12	Roll-to-roll doping method of graphene film, and doped graphene film	10-1234180	US 8926854 B2
02.	2013-05-02	Roll-to-roll transfer method of graphene, graphene roll produced by the method, and roll-to-roll tr ansfer equipment for graphene	10-1262327	US 8916057 B2 CN 102656016 B JP 5707628 B2 JP 5787113 B2
03.	2014-03-03	Graphene roll-to-roll coating apparatus and graphene roll-to-roll coating method using the same	10-1371286	JP 5424210 B2

Applications

No.	Reg. Date	Title (ENG)	Reg. No (Korea)	Reg. No (International)
01.	2012-08-01	Electromagnetic wave shielding method using graphene and electromagnetic wave shielding mater ial using graphene	10-1171818	
02.	2013-01-09	Flexible transparent heating element using graphene and method for manufacturing the same	10-1222639	US 8816257 B2
03.	2013-02-12	Sensing method of pressure using graphene device and graphene device used therein	10-1234181	
04.	2013-05-02	Method for improving electrical characteristics of graphene device and graphene device using the s ame	10-1262331	
05.	2013-05-02	Transparent actuator based on graphene electrode and method of manufacturing the same	10-1262323	
06.	2013-05-02	Modifying method of graphene, and device using the same	10-1262310	
07.	2013-05-02	Flexible stretchable semiconductor device containing graphene electrode, method of reducing resi stance between graphene electrode and semiconductor layer, and graphene interconnector	10-1262319	
08.	2013-08-19	Organic field-effect transistor, and preparing method of the same	10-1299597	
09.	2013-08-21	Optical film having graphene, preparing method of the same, and back light unit and liquid crystal d isplay device having the same	10-1300799	
10.	2014-03-07	Graphene transparent electode and flexible silicon thin film semiconductor device having the same	10-1375124	
11.	2014-06-02	Flexible solar cell and preparing method for the same	10-1405464	
12.	2014-06-02	Graphene protective film for preventing gas and water, method of forming the same and uses of th e same	10-1405463	
13.	2014-08-27	Patterning method of graphene using hot embossing imprinting	10-1436911	
14.	2014-10-17	Variable focus lens, and preparing method of the same	10-1454270	
15.	2014-11-03	Touch sensor using graphene for simultaneously detecting a pressure and a position	10-1459307	US 9297831 B2
16.	2015-11-18	Patterning method of graphene using hot embossing imprinting	10-1571317	
17.	2016-02-17	Graphene protective film for preventing gas and water, method of forming the same and uses of th e same	10-1596859	

GRAPHENE SQUARE PRODUCT BROCHURE 12....13

IP Development & Licensing

Sungkyunkwan Univ. (SKKU) famous for the world's most graphene patent applications has transferred the most important graphene-related 42 patents to Graphene Square Inc. in 2012.

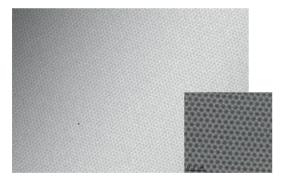
34 31 47 **Registered Patents Applied Patents Applied Patents Registered Design** (Domestic) (International) (GSI Logo) Applied Patents by country 5 16 4 PCT USA Japan 3 3 China Europe

Graphene Square's IPs (March 16, 2017)

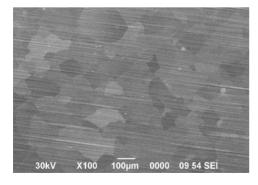
GSI's Key Patents Highlighted by Bloomberg & Businessweek

"Hong's patents are key in making cost-efficient, large-scale graphene for touchscreen panels in mass volume."

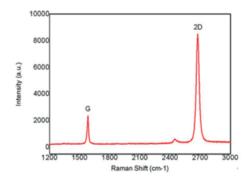
(Samsung-Apple Smartphone Battleground Is Single Atom Thick May 15, 2014, Bloomberg.com)



CVD Graphene on Cu foils



Product Size	Up to 500x600mm²
Film Morphology	Continuous Monolayer (>95%)
Sheet Resistance	-
Mobility	>3500cm ² /Vs
Transmittance	>97%
Substrate	Cu foil (35µm thick)
Domain Size	10-20 µm


High-Resolution TEM Images

SEM Image of Graphene on Cu

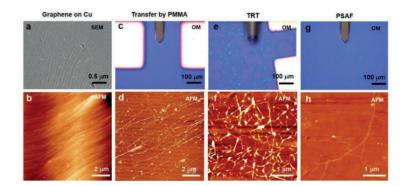
Raman Spectrum (after transfer)

Reference

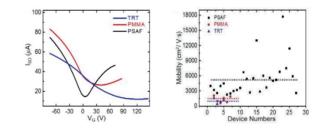
(1) S. Bae^{*}, H. Kim^{*} *et al*. **Roll-to-roll production of 30 inch graphene** films for transparent electrodes *Nature Nanotech.* **5**, 574 (2010).

(2) Y. Lee *et al*. Wafer-Scale Synthesis and Transfer of Graphene Films.*Nano Lett.* **10**, 490-493 (2010).

(3) H.-A-S. Shin *et al.* Graphene-induced Unusual Microstructural Evolution in Ag Plated Cu Foils. *Nanoscale* 6, 7209-7214 (2014).


(4) Hae-A-Seul Shin*, Jaychul Ryu* *et al.* **Highly Uniform Growth of Monolayer Graphene by Chemical Vapor Deposition on Cu-Ag Alloy Catalysts.** *Phys. Chem. Chem. Phys.* **16**, 3087-3094 (2014).

Ultra-Clean Graphene on SiO₂/Si Wafers



Product Size	Up to 90 x 90 mm ² (Max)
Film Morphology	Continuous Monolayer (>95%)
Sheet Resistance	Av. < 250~400 Ω/sq
Mobility	>3500 cm ² /Vs (Max. 17,000 cm ² /Vs)
Transmittance	>97%
Substrate	SiO ₂ (300nm)/Si wafer (Standard)
Domain Size	10-20 µm

Ultra-Clean Transfer by Pressure Sensitive Adhesive Films

Electrical Properties

Reference

(1) S. Kim *et. al.* Ultra-Clean Patterned Transfer of Single-Layer Graphene by Recyclable Pressure Sensitive Adhesive Films. *Nano Lett.* **15**, 3236–3240 (2015).

(2) S. Bae*, H. Kim* et al. Roll-to-roll production of 30 inch graphene films for transparent electrodes Nature Nanotech. 5, 574 (2010).

Graphene on PET

Product Size	Up to 500 x 600 mm²
Film Morphology	Continuous Monolayer (>95%)
Sheet Resistance	Av. < 250~400 Ω/sq
Mobility	>3500 cm ² /Vs
Transmittance	>97%
Substrate	PET (188µm) (Standard)
Domain Size	10-20 µm

Application of Graphene on PET for Flexible Touch Screen

Sheet Resistance Uniformity

300 260

220 180

140

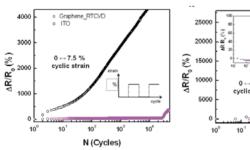
100 Ohm/Sq.

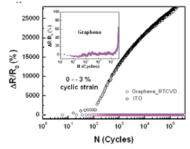
200

160

120

80


40

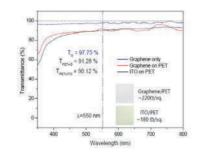

0 <mark>|</mark> 0

Y (mm)

Mechanical Properties of Graphene on PET

Optical Transmittance

80


X (mm)

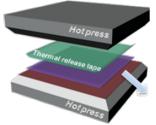
120

160

200

40

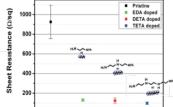
Reference J.-H. Ahn & B. H. Hong Graphene for displays that bend. Nature Nanotech. 9, 737-738 (2014).


GRAPHENE SQUARE PRODUCT BROCHURE 16....17

Graphene on Glass

Product Size	Up to 80 x 150 mm²	
Film Morphology	Continuous Monolayer (>95%)	
Sheet Resistance	Av. < 250~400 Ω/sq	
Mobility	>3500 cm ² /Vs	
Transmittance	>97%	
Substrate	Glass (variable thickness)	
Domain Size	10-30 µm	

Transfer of Graphene onto Rigid Substrates by Hot Pressing



A glass substrate for passive matrix LCDs

N-doped Graphene for Low Sheet Resistance Applications

		Pristine	EDA doped	DETA doped	TETA doped
	Dirac Voltage (Vg)	1.37 ± 2.27	-126.64 ± 6.06	-166.37 ± 1.78	-192.27 ± 6.49
	Carrier concentration(1013)	0.01 ± 0.016	-0.912 ± 0.043	-1.198 ± 0.013	-1.384 ± 0.047
	Mobility(h) [cm ² /Vs]	6219 ± 1288			
NH	Mobility(e) [cm ² /Vs]	3809 ± 876	3711 ± 913	3388 ± 531	2817 ± 475
	Sheet resistance (Ohm/sq)	925 ± 170	130 ± 12	124 ± 28	98 ± 12

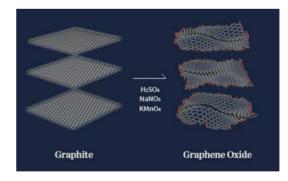
Reference

(1) J. Kang *et al.* Efficient Transfer of Large-Area Graphene Films onto Rigid Substrates by Hot Pressing. ACS Nano 6, 53060-5365 (2012)

(2) Y. Kim *et al.* Vapor-Phase Molecular Doping of Graphene for High-Performance Transparent Electrodes. *ACS Nano*, **8**, 868–874 (2014).

Graphene Oxide Solution

Concentration	0.1g/100ml
Flake size	<1µm
Туре	Dispersion in H_2O / Dried powder
Appearance	Brown
Flake thickness	1-atom layer (>60%)
Electrical properties	Insulator


Applications

- · Functional composite materials (fabric reinforcement, hybrid scaffold for tissue engineering, barrier for electromagnetic waves)
- Biomedical & bio-imaging applications (drug delivery carrier, imaging probe, biosensor, photo-thermal therapy, enzyme activation catalyst)
- Energy conversion & storage system (battery & supercapacitor)
- Catalyst for chemical reactions
- Filter membrane for waste water treatment

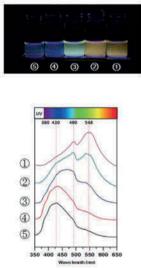
Hummer's Method

Graphene Square has the know-how in making the best and standard method of Graphene Oxide by low salt to high monolayer ratio.

Graphite powder is kept in an acidic environment for about a week to create dispersed reactions towards monolayers; then If you counter react the product from the strong acid solution, then Graphene Oxide is produced; Graphene Oxide solution can be made by mixing 1g/1L of DI water.

Graphene Quantum Dot

Solvent	DIW
Concentr ation	0.5 g/L
Flake size	<10nm
Thickness	1 atomic layer -at least60%
Color	Brown


Production Method

Top-down method (by Carbon fiber)

Applications

- Nanocomposite materials
- Graphene based field effect transistor (GFET)
- Energy conversion & storage
- Chemical reaction catalyst
- Drug delivery carrier
- Tissue engineering

Measurement data

Photoluminescence (PL) spectra

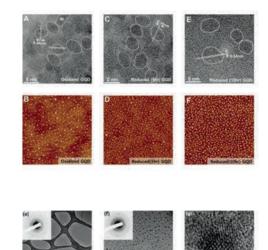


Figure 3. TEM and AFM images of GOQDs (A, B), 5 h reduced GQDs (C, D), and 10 h reduced GQDs (E, F), respectively. The AFM scan ranges are $3\mu m \times 3\mu m$.

(e) TEM image of monolayer graphene supported by holely carbon grids.

(f, g) Low and high-resolution TEM images of N-GQSs on a graphene-supported grid.

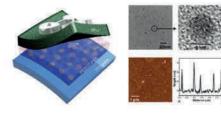
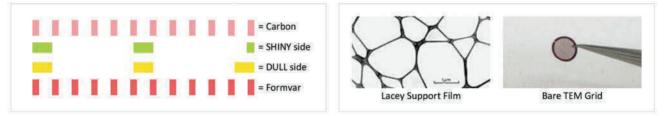


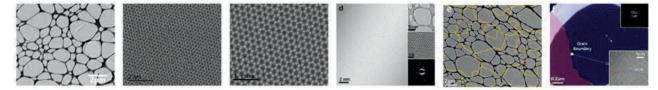
Figure 1. Schematic of device, and TEM and AFM images of GQDs. Schematic of OPV device with a GQD-incorporated PEDOT:PSS layer, and TEM images of the GQDs. The scale bar is 20nm on the TEM image, and 5nm on the inset image. AFM image of GQDs (5μ m by 5μ m) and height distribution from A to B.

Reference

(1) J.Moon *et al.* One-Step Synthesis of N-Doped Graphene Quantum Sheets from Monolayer Graphene by Nitrogen Plasma. *Adv. Mater.* **26**, 3501–3505 (2014).


(2) Jung Kyu Kim^{*}, Sangjin Kim^{*} *et al*. Graphene Quantum Dots Incorporated Hole Extraction Layer for Efficient Organic Photovoltaics. *Sci Rep*, **5**, 14276

CVD Graphene on TEM Grid



Grid Cross Section

Lacey carbon Type A: The Lacey formvar film is applied to the dull side of the grid and carbon depositied onto the shiny side. When the formvar is removed in solvent the carbon film is left on the shiny side.

Measurement data

(d) HR-TEM results showing the atomic lattice structures of RT-CVD graphene. The graphene samples were prepared with holey carbon grid (upper inset). The aberration-corrected scanning TEM image provides an atom-by-atom analysis of graphene (mid inset). The diffraction pattern indicates the corresponding graphene is a highly crystalline monolayer (lower inset). (e) Graphene domain distribution investigated by selected area diffraction patterns (SADP) and TEM imaging. (f) Graphene boundaries of RT-CVD graphene characterized by dark-field TEM and aberration-corrected HR-TEM images . The left and right parts of the grain boundary are imaged with an aperture at the red and blue circled spots of the diffraction pattern (upper inset). The atomic image shows that two graphene domains are smoothly connected with an angle of 36° (lower inset). See also Supporting Figure S2 for more dark-field TEM analyses.

Reference

(1) Kim, Sang Jin, *et al.* "Simultaneous etching and doping by Cu-sta-bilizing agent for high-performance graphene-based transparent electrodes." *Chem. Mater.* **26** 2332 (2014)

(2) Ryu, Jaechul, *et al.* "Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition." *ACS*, nano **8**, 950 (2014).

Graphene Square in Global Market, As the Leader of Graphene Commercialization

Customers

UKR

university of groningen

ASML

	University of North Texas Massachusetts Institute of Technology HRL Laboratories California Institute of Technology Carnegie Mellon University		Nokia Research Centre University of Oxford University of Leeds
	HRL Laboratories California Institute of Technology		
	California Institute of Technology		University of Leeds
	Carnegie Mellon University		University of Exeter
			Plymouth University
	University of Minnesota	Netherland	Delft University of Technology
	Utah State University		University of Groningen
r r s E E	University of Wisconsin-Madison		Philips Research Lab
	North Carolina State University		ASML
	Millennium Laboratories	Finland	
	Stanford University	T Initiana	Nokia
	Intel Corporation		Aalto University
	Edico Genome	Greece	Institute of Material Science NCSR Demokritos
	Boston University	Switzerland	ABB Switzerland Ltd.
	Cornell University		ETH Zurich
	Harvard University		IBM Zurich Nanotech Center
	Ohio University	France	Logitrade(Campus polytech)
	GM	Germany	IHP GmbH
Thailand	King Mongkut's University of Technology Thonburi	Malaysia	Avante Systems
	1		

UNIVERSITY OF LEEDS

UNIVERSITY OF

Connecting People

OXFORD

EXETER TUDelft Defft Defft Defft

Power and productivity for a better world"

All about Graphene

Graphene Square, Inc. is a pioneer in the commercialization of graphene material and graphene films for use as a transparent conductor and in other electronics applications. Established as a spin-off of the research of Prof. Byung Hee Hong at Seoul National University and with headquarters in Seoul, Korea. Graphene Square will continue to stay as the world leader of the graphene commercialization research, also will continue to provide the best quality graphene and equipment to all over the world for the continuous development of carbon and 2D materials for the bright future of the science & technology for mankind.

Customers

Austria	University of Vienna		Japan	JX Oil & energy
Italy	University of Bari			NTT-AT
Poland	University of Lodz		Hong Kong	Hong Kong Baptist University
Estonia	University of Tartu			A&P Instrument
South Africa	University of South Africa		India	Institute of Inorganic
Republic of Korea	Samsung			Methodologies and Plasmas
Korca	LG Display	-		Tata Institute of fundamental Research
	Seoul National University			BHAI BHAI ENTERPRISE
	SungKyunKwan University			GE corporation
	Korea University			VIT university
	KAIST			Indian Institute of Science
	GIST		Saudi Arabia	King Abdullah University of Science and Technology
Singapore	National University of Singapore		Australia	CSIRO -
	S&L Innovations and Technology Pte. Ltd			Commonwealth Scientific and
				Industrial Research Organisation
hina	University of Nanjing			Curtin University Australia
China	shanghai, Jiao Tong University			School of Photovoltaic
Deutschland	IHP GmbH	-	Taiwan	Taiwan University
Deutschland	University of Regensburg	_	Spain	ICFO

고려대학교

KAIST

NTT

UNIVERSITY

香港浸會大學

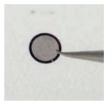
광주과학기술원

Graphene Samples for R&D

CVD Graphene on Cu Foil

Graphene on Sio2/Si wafer

Graphene on PET/Quartz glass


Graphene Oxide Solution

Transfer Kit(CVD Graphene on Cu foil & TRT)

Graphene Quantum Dot

CVD Graphene on TEM Grid

Graphene & 2D Materials Growth Equipment

TCVD 50B

TCVD 50B

TCVD-100A

Reactive Ion Etcher

TCVD-RF100CA

Reactive Ion Etcher

TCVD-DRF100CA

Thermal Evaporator

"All about Graphene"

www.graphenesq.com

HEADQUARTERS

Graphene Square Inc. Inter-University Semiconductor Research Center Seoul National University 1 Gwanak-ro, Seoul 08826, Korea TELEPHONE +82-2-880-6569 E-MAIL info@graphenesq.com WEBSITE www.graphenesq.com

US BRANCH OFFICE

2115 Linwood Ave., Suite 515 Fort Lee, NJ 07024, USA TELEPHONE +1-201-944-0775 E-MAIL steveh@graphenesq.com

GLOBAL DISTRIBUTORS

USA

Micro Photonics Inc. 1550 Pond Rd, Suite 110 Allentown, PA 18104, USA TELEPHONE +1-610-366-7103, +1-484-274-9341 E-MAIL ian@microphotonics.com WEBSITE www.microphotonics.com

USA Demo System-Clean Room

Micro Photonics Inc. 630 Pena Dr. Unit 900 Davis, CA 95616, USA

EUROPE

Graphene Square Europe C/Marqués de Teverga 3 33400 Aviles (Asturias), SPAIN TELEPHONE +34-98-556-12-14 E-MAIL euinfo@graphenesq.com WEBSITE http://eu.graphenesq.com

EUROPE Demo System-Clean Room

CINN-Centro de investigacion en Nanomateriales y Nanotecnologia Avda de la Vega 4-6 33940 El Entrego (Asturias) Spain